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A N A L Y T I C A L  METHODS OF I N V E S T I G A T I O N  
OF THE T H E R M A L  STATE O F  A REGION WITH 
A M O V I N G  B O U N D A R Y  U N D E R  THE CONDITIONS 
OF N O N S T A T I O N A R Y  HEAT T R A N S F E R  TO THE 
E X T E R N A L  M E D I U M  

A. V. Attetkov and I. K. Volkov UDC 536.2 

An analytical method of solution of  combined problems of  nonstationa~ heat conduction for a region 
with a bounda~, moving according to a known law and with a time-variable coefficient of heat transfer 
is developed. The idea ~8 ¢ splitting the kernel of the obtained generalization of  a singular integral 
Fourier transform with respect to a space variable provides a basis for  the method. Theoretical results 
are used in mathematical simulation of heat transfer processes in the region with a moving houudatw. 
under the conditions of nonstationa~, heat transfer to the external medium. 

The combined problem of nonstationary heat conduction for a region with a boundary moving accord- 
ing to a known law occupies a special place in mathematical theory of heat conduction [1]. The necessity of 
allowing for the mobility of the boundary arises, in particular, in mathematical simulation of high-temperature 
modes of the effect which are accompanied, for example, by destruction or ablation melting of surface layers 
of material [2]. Physical realization of the mentioned models of thermal effect inevitably leads to changes in 
the conditions of heat transfer to the external medium and manifests itself in a time variation in the coefficient 
of heat transfer. 

The mathematical model of the heat transfer process in the region with a boundary unitbrmly moving 
according to the law v = v = 213Fo has the tbrm 

~0 020 
~Fo ~ 2 '  ~ >v (F° ) '  F o > 0 ,  

where 

O0 (~__, Fo) 

Ok ~=v{Fo) 

o (~, o) = o ,  

= Bi (Fo)!tO (~, Fo) I ~:~(Fo) - ~ (Fo)}, 
(1) 

x ~t T -  T0 Tc - T0 a 
~ = - - ;  Fo=--~-" 0 - - - ,  ~ - - - ;  B i = - - x , .  

s ,  x ,  r c o -  To L o -  To ;~ 

In accordance with the meaning of the problem solved, the functions Bi(Fo), ~(Fo), and v(Fo) are non- 
negative, and the functions Bi(Fo) and ~(Fo) are absolutely integrable on the half-open interval [0, -t-oo ) when 
Fo>0.  

We emphasize that determination of an analytical solution of problem (1) involves fundamental diffi- 
culties. This is basically caused by the dependence of the function Bi on the Fourier number Fo. This problem 
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is discussed in [1]. It should, however, be noted that in the case of absolutely integrable functions Bi(Fo) and 
~(Fo) when Fo > 0, the conditions of the theorem [3] of existence and uniqueness of the problem considered 
are met, i.e., the solution 0(~, Fo) ~ L2[v(Fo), 4-oo) Ll[0, 4-oo) of problem (1) exists and is uniqued. The present 
study is aimed at obtaining this solution. 

To simplify further consideration, we pass over to a moving system of coordinates using a new space 
viariable 

X = ~ - v  (Fo). 

In this case, problem (1) acquires the following form: 

30 320 
213 30  ' - - +  X 

3Fo - 3X 2 ~X 
> 0 ,  F o > O ,  (2) 

o (x, o) = o ,  

~o (x, Vo)] =mCVo){O(X, Vo)lx=o-;(Vo)}. 
3X x=o 

The solution of problem (2) is based on the use of a singular integral transform with respect to a space 
variable X: 

u (~., Fo) = • [0 (X, Fo)] -- 0 (X, Fo) p (X, Fo) K (X, ~., Fo) d X  = 

0 

0 

d X ,  (3) 

2 I 0 (X, Fo)  = (I)-1 [u (~,, Fo)] -=-  u (~,, Fo) exp (-  IX) × 

0 

tl (Fo) } Z2d'A, 
x cos (Lk') + sin (LX) X2 

k + h 2 (Fo)  

(4) 
h (Fo) = Bi (Fo) + t .  

Expression (3) is a generalization of the combined integral Fourier transform [4, 5]. 
Direct use of (3) for obtaining the solution of problem (2) is impossible [6] because its kernel K(X, )~, 

Fo) depends not only on the space variable X and the parameter of integral transformation ~., but also on the 
Fourier number Fo. This, in particular, leads to the tact that 

a, [30 (x, _Fo)]. 3. (~, Fo) 
L 3Fo J 3Fo 

To overcome these difficulties, we use the Euler formulas and transform the kernel of integral trans- 
form (3): 
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where 

p (X, Fo) K (X, ~,, Fo) = 

_= I exp (13X){to (~., Fo) exp flEX) + ~ (~., Fo) exp ( -  iLg)}, 

a tl (Fo) 
to (~., Fo) = 1 - i (5) 

Introducing the notation 

m (~, Fo) - to (-  ~., Fo) = 1 + i  
1l (Fo) 

A (~., Fo) ~ i 0 (X, Fo) exp [(13 + i~.) X] dX, 
0 

(~., Fo) ~ i 0 (X, Fo) exp [([3 - i~.) X] dX, 
o 

we can represent the integral transform in the tbrm 

1 u (~., Fo) -= ~ {to (~., Fo) A (K, Fo) + o (~., Fo) A (~., Fo)} -- 

= Re {to (~., Fo) A 0~, Fo)}. 

Here, according to (6), the identities 

(~,, Fo) = A ( -  ~., Fo),  

(6) 

(7) 

(8) 

~ [ ~ 0  (X, F o ) ] ~ o  J--21{ to (~" F°) 
3A 0., Fo) 

~Fo 
3A (~., Fo) 1 

1' 
,~ r |.a: 0 (x, Fo) 

L 3X 2 
+ 2 ~  

30 (X, Fo)] 
~-X J = Bi (Fo) ~ (Fo) - (~2 + 132)//(~, Fo) = 

-- Bi (Fo) ~ (Fo) - 1 (~,2 + [32) {to (~., Fo) A (~, Fo) + ~ (~., Fo) A (~,, Fo)} 

hold true and problem (2) in the transforms of (3) can be put into the form 

3A a~ 
CO ~ O  + ~ ~ + (~2 + [32) {toA + ~ }  = 2Bi (Fo) ¢ (Fo) ,  Fo > 0 ; 

A (~,, O) = 0 = A (~,, 0) .  

With regard to conditions (5) and (8) this allows one to write the Cauchy problem for the function 
Re{AO., Fo)} 
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Re m(~,, Fo) [- + (~2 + 132) A (~,, Fo) - Bi (Fo) ~ (Fo) = O, Fo > 0 ; 

A (k,O)=O. 
(9) 

To determine the function A0~, Fo), we impose an additional limitation 

{ 1 t Im e0(K, Fo)| .  + (~2+~2)  A(L, Fo) - B i ( F o ) ~ ( F o )  = 0 ,  F o > 0 ,  

i.e., we will assume that the function A(~., Fo) is the solution of the Cauchy problem 

3A (~,, Fo) + ()2 + ]32) A (~, FO) = Bi (Fo) ~ (Fo) 
OFo m (K, Fo) 

A (k, 0 ) = 0 ,  

, F o > 0 ;  

(lO) 

where the function ¢.0(~., Fo) is determined by equality (5). Here it should be noted that if the function A(~,, Fo) 
is the solution of problem (10), it is also the unknown solution of problem (9). 

The solution of the Cauchy problem (10) is found by standard methods [7]: 

Fo 

A (~,, Fo) = j" oa (~., "0 
o I t°(z"  x)l z 

Bi ('t) ~ (x) exp I- 0C + 132) (Fo - I:)} dx. 

Hence, with account for equalities (4), (5), and (7), we obtain the solution of  problem (2) in the transforms of  
(3) 

u (~, Fo) = Re {¢o (~, Fo) A (K, Fo)} = 

Fo ~2 
= I + h (Fo) h (~) 

0 ~2 + h 2 (X) 
Bi (1:) ~ ('c) e x p -  (~2 + ]32) (Fo - x)} dx. (ll) 

An analytically closed form of representation of the function 0(X, Fo) follows from (11), if we use the 
formula of  conversion of integral transform (3) 

:_ { } 0 (X, Fo) 2 exp ( -  ]3X) u (~, Fo) cos (LX) + ~ sin ()Of) 
7~ 

0 

X 

Z,zc& (12) 
x , X_>O, Fo_>O, 

~2 + h 2 (Fo) 

where the function u(X, Fo) is determined by equality (11) and the function h(Fo) by equality (4). 
Since in the class of functions L2[v(Fo), +oo) L1[0, +o,,) the solution of  problem (2) exists and is 

unique, the function 0(X, Fo) determines a temperature field in the region X > 0 with the given law of motion 
of its boundary v(Fo) = 213Fo and the time-variable Biot number Bi(Fo) and temperature of the external me- 
dium ~(Fo). 

The temperature of the moving boundary can be found from (12) at X = 0: 
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Fig. I. Temperature 0 s of  the boundary X = 0 of a half-space vs. Fourier 
number Fo under the conditions of  heat transfer according to the Newton 
law (I) and in the pulse mode o f  heat transfer with duration z 0 = 2 of  its 
"active" phase (II): a) [3 = 0; b) 0.5; c) 1.0 (Bi = l). 

)~2d~. ( 13 ) 
O~(Fo)--O(O, F o ) = 2  J" u(~ . ,Fo)~2  h 2 , Fo_>O. 

n + (Fo) 
0 

We use the obtained results tbr studying the thermal state of  the region with a uniformly moving 
boundary in various modes of  heat transfer to the external medium at ~(Fo) = 1: 

under the conditions of  heat transfer according to the Newton law 

Bi (Fo) = Bi = const  

and a pulse mode with the duration x0 of  an "active" phase of  heat transfer 

B i  ( F o )  = B i  ( F o )  - S ( F o  - ' 

where J(.)  is the Heaviside function [81. 
In the mentioned modes of" heat transfer the function 0s(Fo), determined by equalities (11) and (13), 

can be presented in analytically explicit form: 
under the conditions o f  heat transfer according to the Newton law 

1 
O~ (Fo) = Bi + 2~ ~o (Bi, 13, F o ) J  (Fo) ,  (14) 

where 

q) (Bi, [3, F o ) =  Bi + I ] erfc {[3 F',~-o } - (Bi + 13) exp {Bi (Bi + 2[3) Fo} × erfc {(Bi + [3) F'~o } ; 

in the pulse mode of  heat transfer 

1 
0 s (Fo) - Bi + 2[3/q) (Bi, [3, Fo) J (Fo) - cp (Bi, [3, Fo - z 0) J (Fo - z0)}, 

where erfc u = - ~ - j ' e x p  ( -22)d2 is the complementary Gauss error function [8]. 

/ t  

At 13 = 0 (v = 0), the solutions obtained determine the temperature o f  a motionless boundary X - ~  = 
0 of  a half-space in the studied modes of  heat transfer to the external medium. 
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Fig. 2. Temperature 0s= vs. parameter 13 and Biot number Bi under the 
conditions of heat transfer according to the Newton law. 

Figure 1 presents time dependences of  the temperature of  a moving boundary X = 0 under the condi- 
tions of heat transfer according to the Newton law (I) and in the pulse mode of heat transfer x0 = 2 (II) at Bi 
= 1 and di f ferent  values of the parameter 13. It is seen that the mobility of the boundary of  the region reduces 
the magnitude of its heating. 

At higher values of time the asymptotic behavior of the function 0~(Fo) assigned by equality (14) is 
determined as 

Bi _ J !  - Bi (Bi + 2[3) exp (-  132 Fo)l 0,~ (Fo) 
Bi + 2[3 [ 2 4-~-~ 13 2 (Bi + ~)2 Fo3/2 

,p 

! 

i.e., when Fo --~ +oo 

Bi 
0 s =  - B i  + 2[3 " 

Hence it follows that under the conditions of heat transfer according to the Newton law, the maximum heating 
of the region with a moving boundary is determined by the velocity of boundary motion and depends on the 
Biot number (Fig. 2). 

We note for comparison that the asymptotic estimate of  the maximum heating of  the region with a 
motionless boundary (13 = 0) under the conditions of  heat transfer according to the Newton law has the form 

18] 
1 

0 s (Fo) - 1 
Bi  ~ ~ o  ' 

i.e., 0s~ = 1 when Fo ---> oo. 
In the pulse mode of heat transfer to the external medium 0s(Fo) ~ 0, when Fo ~ +oo for all [3 > 0. 
This work was carried out with financial support from the Russian Fund for Fundamental Research, 

project code 96-03-32193. 

N O T A T I O N  

x, space variable; t, time; T, temperature of  half-space; Te, temperature of external medium; ~ = x/x, ,  
dimensionless variable; Fo = w,t/.r~, Fourier number; Bi = ~r./~,, Biot number; x., selected unit of scale; ~., 
thermal conductivity; lc, thermal diffusivity; c~, coefficient of heat transfer. 
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